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Abstract

Cloud feedbacks are widely considered to be the largest source of uncertainty in determining the sensitivity of the climate system to increasing greenhouse gas concentrations, yet our ability to diagnose them from observations has remained controversial.  Here we use a simple energy balance model to demonstrate that daily random noise in low cloud cover can cause interannual and decadal time scale temperature variability that produces a positive bias in cloud feedbacks diagnosed in the traditional manner from the model output.  For those model runs producing monthly anomaly statistics similar to those measured by satellites, the diagnosed feedbacks have positive biases generally in the range of -0.6 to -1.3  W m-2 K-1.  The amount of bias depends mostly upon the size of the non-feedback cloud variability relative to the surface temperature variability.  These results suggest that current observational diagnoses of cloud feedback could be significantly biased in the positive direction.   
1. Introduction

Our understanding of how sensitive the climate system is to radiative perturbations has been limited by large uncertainties regarding how clouds feed back on surface temperature change (e.g. Webster and Stephens, 1984; Cess et al., 1990; Senior and Mitchell, 1993; Stephens, 2005; Soden and Held, 2006).  Feedbacks are traditionally estimated by regressing time- and area-averaged top of atmosphere (TOA) solar shortwave (SW) radiative flux changes or thermally emitted infrared longwave (LW) radiative flux changes against surface temperature changes (Tsfc).   The regression slope of the resulting relationship provides the diagnosed feedback parameter (Y) in W m-2 K-1. 


A formalism to estimate cloud feedback parameters was presented by Forster and Gregory (2006, hereafter FG), whose generalized treatment included both internal and external sources of variability in TOA radiative fluxes.  We are specifically interested in one of  FG’s stated assumptions regarding the possible contamination of diagnosed feedbacks by internal sources of variability (“X” terms) in the TOA flux that are not the result of feedback on Tsfc.  Specifically, FG state:


“The X terms are likely to contaminate the result for short datasets, 


but provided the X terms are uncorrelated to Tsfc, the regression 


should give the correct value 
for Y, if the dataset is long enough.”
While it is true that the processes that cause the X terms are, by FG’s definition, uncorrelated to Tsfc, the response of Tsfc to those forcings can not be uncorrelated to Tsfc --for the simple reason that it is radiative forcing that causes changes in Tsfc.  Of course, ignoring non-feedback sources of cloud variability as a surface temperature forcing mechanism is not new;  all investigators who estimate cloud feedbacks in the traditional manner make the same assumption, whether it is explicitly stated or not.

 Here we address the following question: To what degree could non-feedback sources of cloud variability contaminate traditional feedback estimates?  The potential origins of such cloud variations are many: changes in atmospheric circulation patterns such as the Pacific Decadal Oscillation (PDO, e.g. Mantua et al., 1997) or North Atlantic Oscillation (NAO, e.g. Hurrell, 1995); the controversial theory of cloud modulation by cosmic rays (Svensmark and Friis-Christensen, 1997); or stochastic variations in cloud cover (e.g. Battisti et al., 1997) and surface heat fluxes (Hasselman, 1976).  
2.  Model Description


To explore this issue we developed a simple time-dependent energy balance model in which the energy balance can be perturbed by specified cloud radiative inputs or non-cloud Tsfc changes, and in which cloud feedbacks can be turned on or off.
We will use daily random fluctuations in cloudiness as a non-feedback source of cloud variability.  This random, high frequency radiative forcing causes substantial interannual and decadal temperature variability in the model which we then analyze in the traditional manner to see how closely the diagnosed feedbacks match the feedbacks that were specified in the model.  


The model is not meant to provide accurate evaluations of errors in cloud feedback diagnoses, but instead to provide a simple framework for demonstrating potential problems in those diagnoses.  Despite the model’s simplicity, it is still able to reproduce basic characteristics of observed interannual climate variability.  


The model, details of which are included in the Appendix, includes the dominant modes of vertical energy exchange in the Earth’s energy budget summarized by Kiehl and Trenberth (1997, hereafter KT).
The model has a uniformly mixed “swamp” ocean 25 m deep, roughly consistent with the World Ocean Database 1998 average ocean mixed layer depth for the latitude band 20°N to 20°S (Monterey and Levitus, 1997).  The model atmosphere is a single, 1000 hPa thick layer which has an upper atmospheric temperature Tupper that radiates to outer space, and a lower altitude temperature Tlower that radiates downward to the surface.  

We assume a negative evaporative feedback on surface temperature having a strength roughly equal to the average of the IPCC AR4 climate models (Held and Soden, 2006).  All non-radiative heat loss is assumed to be through evaporation, which then immediately warms the model atmosphere through condensational heating.  While the resulting temperature response of the atmosphere can be partitioned between Tupper and Tlower to mimic lapse rate feedback, here we will assume no lapse rate feedback; that is, latent heating will be assumed to cause equal temperature changes in both atmospheric radiating temperatures.  Since the infrared absorptivity of the atmosphere is assumed to remain constant, there is no water vapor feedback.

Since it is known that high-frequency stochastic forcing can cause substantial low frequency variability in the climate system (e.g. Hasselman, 1976), we chose random daily fluctuations in low cloud coverage as a non-feedback source of cloud radiative input.  For simplicity, the low cloud variability was allowed to impact the reflected SW at TOA, but not the emitted LW.  Daily random variability in Tsfc can be specified, representing any non-cloud source of temperature variability, as this is necessary to test feedbacks in the absence of any other radiative forcings.  Finally, the strength of low cloud SW or high cloud LW feedbacks on surface temperature can be specified separately or together.  For simplicity of the demonstration, here we will allow only the SW feedbacks to vary;  LW cloud feedback will be set to zero.

Since the model is run with a variety of forcings and feedbacks, it is useful to determine which combinations produce physically realistic behavior.  To do this we compared the time variability of the model output to satellite observations.  For reflected SW variability, we computed the standard deviation of 30-day average anomalies in NASA’s Terra satellite Clouds and the Earth’s Radiant Energy System (CERES, Wielicki et al., 1996) reflected SW fluxes, and in the Tropical Rain Measuring Mission (TRMM) satellite Microwave Imager (TMI, Kummerow et al., 1998) measurements of sea surface temperatures (Wentz et al., 2000).  These measures of variability were computed for the tropical oceans in the latitude band 20°N to 20°S, during the period March 2000 through December 2005.  This is the same region studied in our composite analysis of tropical intraseasonal oscillations (Spencer et al., 2007).  Averaging the data to monthly time resolution greatly reduces the sampling errors that arise from incomplete coverage of the tropics by the satellites on short time scales.  The resulting standard deviation of the 30 day averaged SW fluxes was 1.3 W m-2, and of the Tsfc variations was 0.134 deg. C. 
 3.  Model Experiment Results
3.1 Random cloud forcing without cloud feedback

We first demonstrate the simple case where the only specified source of model variability is daily random fluctuations in low cloud fraction; no cloud feedbacks are included.  The magnitude of the random cloud changes was adjusted to approximate the CERES-observed 30 day SW standard deviation of 1.3 W m-2.  This required about +/-5% variations around the energy balance cloud fraction of 0.225.


The resulting model Tsfc time series is shown in Fig. 1.  The multi-decadal temperature fluctuations reveal a random walk character, but one that is constrained by energy balance to an average surface temperature of 288 K.  Depending upon the random number generator seed, the time series seen in Fig. 1 can change considerably, with more or less amounts of low-frequency variability.

When we plot yearly averaged model output of reflected SW against Tsfc (Fig. 2), we see a substantial positive feedback parameter of  –2.26 W m-2 K-1 -- even though no cloud feedback was specified.  (Note that positive feedbacks have negative values).  
Note that there is also considerable scatter in the relationship, with a relatively low explained variance of 26%.  It might be significant that the feedback diagnoses of FG based upon satellite observations also had low correlations.   In contrast, if we specify any cloud feedback on randomly forced Tsfc variations (not shown), the explained variance is always very high, over 95%.  This suggests that the low explained variance in FG’s feedback diagnosis could, by itself, be evidence for non-feedback sources of SW variability.
3.2 Random cloud and SST forcing, with cloud feedback


We now address the case where random cloud noise, random Tsfc noise, and cloud feedback are all included.  The random cloud variability is independent of feedbacks, and the random Tsfc variability is independent of cloud amount.  The results are shown in Fig. 3, where the diagnosed feedback parameter is plotted as a function of the ratio of cloud noise to Tsfc noise.  Each panel in the figure represents averages from a Monte Carlo set of one hundred model realizations, each run with different noise generator seeds.  Each panel in Fig. 3 used the specified fixed cloud noise with Tsfc noise varying along the abcissa.  Cloud noise was relative to an energy balance average cloud fraction of 0.225.  The cloud noise was uniformly distributed, while the Tsfc noise was normally distributed.  The cloud noise was expressed as a Tsfc equivalent before taking the ratio in the abcissa. 

The solid lines in Fig. 3 represent specified zero or negative cloud feedbacks, while the dashed lines represent various positive cloud feedbacks.  The “true” feedback values that were specified in the model correspond to zero cloud noise, i.e. where the lines of diagnosed feedback intersect the ordinate.   

The main conclusion that can be made from Fig. 3 is that the existence of a non-feedback source of cloud variability leads to a positive bias in the diagnosed cloud feedbacks, as indicated by the fact that all of the lines slope downward to the right, in the direction of positive feedback.

The dots in Fig. 3 represent those combinations of model forcings and feedback that produced monthly standard deviations that were within 20% of the satellite-measured values of 1.3 W m-2 for SW, and 0.134 deg. C for Tsfc.  It is interesting that in the special case of zero cloud noise the only model runs that are consistent with the satellite-observed SW and Tsfc variability statistics are those with strongly negative feedbacks.  


Most of the dots in Fig. 3 represent positive biases in diagnosed feedbacks of about -0.5 to -1.5 W m-2 K-1.   As an example, in Fig. 4 we see the errors corresponding to the +/- 4% cloud variability panel, which range from -0.6 to -1.3 W m-2 K-1 .  We note that these errors are a substantial fraction of the positive cloud SW feedbacks diagnosed by FG from observational data.   This raises the question of whether previous observational estimates of positive cloud feedback could have been significantly contaminated by non-feedback cloud variations.

The range of errors represented by the dots in Fig. 3 is, not surprisingly, dependent upon a variety of model assumptions.  For instance, for assumed ocean mixed layer depths greater than that assumed here (25 m), somewhat smaller biases in feedback diagnosis are found.  Nevertheless, our results raise the possibility that there are as yet unidentified levels of positive bias in previous diagnoses of cloud feedback.  
4.  Conclusions

Our simple energy balance model suggests that non-feedback cloud variability can corrupt estimates of feedback that are diagnosed in the traditional manner.  Significantly, the corrupting influence is always a bias in the direction of positive feedback.  Note that this is an energetic necessity since, all other things being equal, decreasing low cloud cover can only cause surface warming, while increasing low cloud cover can only cause surface cooling.  

The issue we have addressed with our simple model is directly related to Stephens’ (2005) discussion of how the climate system is defined when diagnosing feedbacks.  Stephens noted the overly simplistic nature of the climate system that is implicitly invoked when feedbacks are diagnosed from the covariability between observed radiative fluxes and surface temperature.  Since it is well known that the processes that control cloud formation and dissipation are myriad and complex, the existence of non-feedback sources of cloud variability is not an unrealistic expectation.  That significant positive biases in diagnosed feedback occur in our model with only a few percent random variability in the average cloud fraction indicates that the non-feedback source of cloud radiative input to the system does not have to be very large for significant contamination of diagnosed feedbacks to occur.  

It should be emphasized that these biases in diagnosed feedback exist independent of the time scale over which any data averaging is performed; the fundamental problem is related to what the physical sources are of surface temperature variability.  

While we have included neither high cloud feedbacks or forcings, nor water vapor feedback, the inclusion of these would not change the basic concern: to the extent that non-feedback cloud radiative input forces surface temperature variability, it causes a positive bias in feedback diagnoses.  

These results hopefully provide some semi-quantitative insight into previously expressed concerns about the validity of cloud feedbacks diagnosed in the traditional manner from observational data.  They also underscore the need for new methods of diagnosing cloud feedback, as was advocated by Stephens (2005), one example of which is the methodology developed by Aires and Rossow (2003).

Acknowledgments


The TMI sea surface temperature product is produced by Remote Sensing Systems and is sponsored by the NASA Earth Science REASoN DISCOVER Project.  The CERES data were obtained from the NASA Langley Research Center EOSDIS Distributed Active Archive Center.  This research was supported by NOAA contract NA05NES4401001  and DOE contract DE-FG02-04ER63841.  

APPENDIX
A Time-Dependent Energy Balance Model

The shortwave fluxes at the top-of-atmosphere
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where equation (A.1.a) gives the incoming solar flux, (A.1.b) gives the upward solar flux from cloud reflection, and (A.1.c) gives the upward solar flux from surface reflection. In these equations,
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is the solar constant,
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is the fraction of short-wave clouds,
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is the atmospheric absorptivity for shortwave radiation, and
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is the surface albedo.
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The longwave fluxes at the top-of-atmosphere MACROBUTTON MTEditEquationSection2 Equation Section (Next)are given by
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where equation (A.2.a) gives the upward emission from the atmosphere, (A.2.b) gives the upward emission from clouds, and (A.2.c)  gives the upward emission from the surface. Here
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is the Stefan-Boltzman constant,
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is the upper atmospheric temperature,
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is the long-wave cloud fraction,
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is the atmospheric absorptivity for longwave radiation,
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is the cloud top temperature, and
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is the surface temperature.

The shortwave flux at the surface
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The longwave fluxes at the surface MACROBUTTON MTEditEquationSection2 Equation Section (Next)are given by
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where (A.4.a) gives the downward emission from the atmosphere and (A.4.b) gives the upward emission from the surface. 
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is the lower atmospheric temperature.

Our energy balance model includes two feedback terms. The short-wave cloud feedback is given by
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and the evaporative feedback by
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where
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is the evaporative flux,
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is the short-wave cloud feedback factor, and 
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based on the Earth’s average energy balance as defined by the Trenberth and Kiehl (1997) diagram. Equation (A.5.a) is set up such that
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is negative for negative cloud feedback and positive for positive cloud feedback.
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where
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is the gravitational acceleration,
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is the heat capacity of the atmosphere, and
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is the pressure thickness of the atmosphere. Likewise, the surface heating rate is given by
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where
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c

is the heat capacity of water,
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is the depth of the model ocean, and
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r

is the density of water.
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The upper atmospheric temperature MACROBUTTON MTEditEquationSection2 Equation Section (Next)is related to the lower atmopspheric temperature by a contstant
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Figure Captions
Fig. 1.  Energy balance model output of surface temperature when forced with daily random variations in low cloud fraction.
Fig. 2.
 Co-variability between reflected SW versus surface temperature for the model run shown in Fig. 1.  The dots represent one-year averages, which were computed every day during years 10 – 40 of the model run. 
Fig. 3.  Diagnosed SW feedback parameter values as a function of the size of cloud noise relative to Tsfc noise in the time-evolving energy balance model, based upon yearly averages.  The dots represent model combinations that reproduce, to within 20%, the standard deviation of 30 day tropical oceanic average SW and Tsfc variations as observed by satellites during 2000 through 2005.  See text for other details.

Fig. 4.  One of the panels in Fig. 3 (+/- 4% cloud noise), but plotted with the error in diagnosed feedback on the ordinate.
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Fig. 1.  Energy balance model output of surface temperature when forced with daily random variations in low cloud fraction.
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Fig. 2.
 Co-variability between reflected SW versus surface temperature for the model run shown in Fig. 1.  The dots represent one-year averages, which were computed every day during years 10 – 40 of the model run. 
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Fig. 3.  Diagnosed SW feedback parameter values as a function of the size of cloud noise relative to Tsfc noise in the time-evolving energy balance model, based upon yearly averages.  The dots represent model combinations that reproduce, to within 20%, the standard deviation of 30 day tropical oceanic average SW and Tsfc variations as observed by satellites during 2000 through 2005.  See text for other details.
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Fig. 4.  One of the panels in Fig. 3 (+/- 4% cloud noise), but plotted with the error in diagnosed feedback on the ordinate.
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